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We provide evidence that as a general rule Anderson localization effects become weaker as the degree of
differentiability of the disordered potential increases. In one dimension a band of metallic states exists provided
that the disordered potential is sufficiently correlated and has some minimum degree of differentiability.
Several examples are studied in detail. In agreement with the one parameter scaling theory the motion in the
metallic region is ballistic if the spectral density is smooth. Finally, we study the most promising settings to
observe these results in the context of cold atoms.
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I. INTRODUCTION

Eigenstates of a one-dimensional �1D� system are expo-
nentially localized for any disorder and energy1,2 provided
that hopping is restricted to nearest neighbors and the poten-
tial is random and uncorrelated. A natural question to ask is
to what extent this result still holds if these conditions are
relaxed. The effect of long-range hopping is well
understood.3 Localization, though not necessarily exponen-
tial, persists in the case that the hopping term decays asymp-
totically as 1 /n� with ��1 or faster.

By contrast, the effect of a correlated disorder4–12 is still
far from being completely settled. The recent realization of
disordered systems by using ultracold atoms13,14 in optical
lattices has increased enormously the interest in this problem
since the experimental potential is random but highly corre-
lated. We first review the previous literature on localization
in correlated potentials. According to Kotani’s theory4–8 of
random ergodic operators a necessary condition for the exis-
tence of a metallic band is that the potential be deterministic.
A potential is deterministic if given its behavior in a certain
small interval it is possible to predict its value in the rest of
the points.4 A Gaussian potential V�n� with correlation func-
tion B�n���V�n�V�0�� is said to be nondeterministic if and
only if15 �−1

1 dk log S�k��−�, where S�k� is the Fourier
transform of B�n�. An important consequence of Kotani’s
theory8 is that a metallic band cannot exist if the potential is
discontinuous6 or it is a Gaussian noise with correlations
such that limn→�B�n�→0 as a power law or faster.8

In the physics literature16 it was claimed that a band of
metallic states exists in 1D provided that S�k�=0 in a certain
range of k’s. Some potentials with this property �for instance
Gaussian disorder with B�n��sin�bn� /n and b�0� are in-
vestigated in detail in Ref. 16. The approach of Ref. 16 uses
the fact that, in the Born approximation, the Lyapunov expo-
nent is proportional to S�k�. However we note that �a� a
vanishing Lyapunov exponent is not a signature of a metallic
state. It only shows that the decay of eigenstates is slower
than exponential; �b� no metallic band can exist for B�n�
�sin�bn� /n since limn→�B�n��1 /n→0 as a power law.8

This is also confirmed by higher order perturbative
calculations.17

In Ref. 18 it was conjectured that metallic states were
related to disordered potentials such that S�k��1 /k� with
��2. We note however that for B�n�	e−b
n
c+1

with 0�b
�1 and 0�c�1, S�k��1 /kc+2 for almost all k’s. However,
a metallic band cannot exist7,8 since limn→�B�n�=0.

These results place very strict but not insurmountable
conditions on the type of potentials that can lead to metallic
states. A paradigmatic exception is the case of quasiperiodic
potentials. For V�n�=	 cos�2
�n+�� where � is an irratio-
nal number, �� �0,1�, all eigenstates are delocalized for
	�2 �Ref. 19�.

The one parameter scaling theory �OPT� �Ref. 20� is a
useful tool to study localization effects. A key concept in the
OPT is the dimensionless conductance g�N�=Ec /,21 where
Ec is the Thouless energy,  is the mean level spacing and N,
in 1D, it is system size. An insulator is characterized by
limN→�g�N�=0. The mean level spacing �1 /N so in order
to observe metallic behavior in 1D, Ec�1 /N. The typical
time to cross the sample tc is related to the Ec through the
Heisenberg relation tcEc	�. The scaling of Ec�1 /N corre-
sponds thus to ballistic motion tc�N. This is consistent with
the results of Ref. 22 where it was shown that quantum mo-
tion is slower than ballistic if eigenstates are exponentially
localized.

A natural question to ask is whether it is possible to char-
acterize which potentials lead to a band of metallic states in
the associated Hamiltonian. The main goal of this Brief Re-
port is to answer affirmatively this question. We put forward
a general relation between the degree of differentiability of
the potential and the magnitude of Anderson localization ef-
fects. We show numerically that potentials with some mini-
mum degree of differentiability and sufficiently strong long-
range correlations produce a band of metallic states
characterized by quantum ballistic motion. For quasiperiodic
potentials we show analytically that metallic states exist pro-
vided V�x��C� with ��0 where C� stands for functions
which are continuous and �-differentiable. For nonquasiperi-
odic potentials metallic states exist provided that the continu-
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ous limit of V�n��C� with ��1 /2. There are several rea-
sons that indicate that eigenstate localization and
differentiability of the potential are related: in 1D systems
with uncorrelated disorder eigenstates are always exponen-
tially localized. Localization effects are so strong in 1D be-
cause the transmission and reflection probability for different
sites are completely uncorrelated quantities. As a conse-
quence the total probability of reflection never vanishes and
eventually the particle gets localized. By contrast, a certain
degree of differentiability assures that the potential in neigh-
boring sites is strongly correlated. It is thus plausible that for
sufficiently differentiable potentials a band of metallic states
occurs due to destructive interference effects in the reflected
components of the wave packet. This is similar to the mecha-
nism of delocalization in 1D random dimer models.12 Differ-
ences in the minimum degree of differentiability are ex-
pected to depend on whether the potential is quasiperiodic or
not. In the former localization can be avoided either by reso-
nant tunneling or by enhanced destructive interference due to
the smoothness of the potential. In the latter only the second
mechanism is at work.

II. RESULTS

We combine analytical techniques, a finite-size scaling
analysis,23 and a detailed study of g�N� in order to explore
the existence of metallic states in 1D systems. To carry out
the finite-size scaling analysis we compute eigenvalues of
the different Hamiltonians of interest by using standard nu-
merical diagonalization techniques. For a given disorder and
energy window the number of eigenvalues obtained is at
least 2�105. The dimensionless conductance �transmission�
is calculated by using the transfer matrix method �see Ref. 24
and references therein�. Fluctuations were reduced by com-
puting �ln g�N�� where, for a given energy, �. . .� stands for
ensemble average over at least 105 disorder realizations.

The finite-size scaling method23 is based on the study of
the scaling properties of a spectral correlator. A popular
choice is the variance var�s� of the level spacing distribution
P�s�, where P�s� is the probability of finding two neighbor-
ing eigenvalues at a distance s= �	i+1−	i� / and

var�s� � �s2� − �s�2 = �
0

�

dss2P�s� − 1, �1�

where �. . .� denotes spectral and ensemble averaging. The
prediction for a metal with time reversal invariance is
var�s��0.273 �var�s�=0� if the motion is diffusive �ballistic�
while for an insulator gives var�s�=1. If the variance gets
closer to the metal �insulator� result as the volume is in-
creased we say that the system is a metal �insulator�.

III. QUASIPERIODIC POTENTIALS

In this section we explore the relation between differen-
tiability and localization in quasiperiodic potentials. As was
mentioned previously metallic states do exist for analytical
potentials V�n�� cos��n+�� �Ref. 25�. In Ref. 19 it was
proved the existence of metallic states in less smooth poten-
tials V�n�=kak cos��n+�� with 
ak
�Ae−Bk, A ,B positive

constants, and � an irrational number. It is conjectured26 that
a metallic band might exist for V�n��C� and ��3 /2. Be-
low we provide evidence of the existence of metallic states
for even less smooth potentials V�n��C� with ��0.

Our starting point is a 1D tight-binding Hamiltonian,

H�n = �n+1 + �n−1 +
1

	
V��n + ���n, �2�

where V�x�=kak cos�2
kx�, �� �0,1�, and ak are real coef-
ficients. From this definition it is clear that the V�x��C�

provided that 
ak
�A /k1+� with � and A real positive con-
stants. This model is in principle suitable to an analytical
treatment. The first step is to Fourier transform Eq. �2�:

H�k = 
m

ak−m�m + 2	 cos�2
�k + ���k, �3�

where H is, after a 	 rescaling, the Fourier transform of H.
We note that according to Ref. 3 all eigenstates of Eq. �3� are
localized for ��0 provided the diagonal element is random
uncorrelated instead of 		 cos�2
�k+��. However, for suf-
ficiently large 	 this potential leads to a full band of localized
states.25 It is thus plausible that its pseudorandom character
is not important in this limit and consequently the results of
Ref. 3 apply. Then it remains to show that localization in the
Hamiltonian, Eq. �3�, means delocalization for the Hamil-
tonian, Eq. �2�. This fact was proved in Ref. 27 for quasip-
eriodic potentials such as the one of Eq. �2�. Numerical re-
sults, not shown, fully confirm this picture. In conclusion, a
band of metallic states can exist provided that V�x��C� with
��0.

IV. NONQUASIPERIODIC SYSTEMS

In this section we show numerically that for nonquasip-
eriodic potentials a band of metallic states can only occur for
V�n��C� with ��1 /2. Our findings, though obviously con-
sistent with Kotani’s theory7 mentioned in the Introduction,
cannot be obtained from it. We note that this theory only
provides necessary �limx→�B�x��0� but no sufficient condi-
tions for the existence of metallic states.

In order to generate a potential with a given degree of
differentiability we smooth a Gaussian uncorrelated potential
by using different methods available in the literature:
Savitzky-Golay,28 Fourier filter, and fractional integration
method.29,30 Results should not depend on the smoothing
method provided that both the degree of differentiability and
the correlations of the resulting smoothed potential are the
same. Our first smoothing method consists in the application
of a fractional integral operator, the Grünwald-Letnikov
operator,29 on an uncorrelated random potential. The
smoothed potential is given by

V�n� = D�−�−1/2�an = 
i=0

n

�− 1�i�− � − 1/2
i

�an−i, �4�

where D�−�−1/2�an stands for the �+1 /2 integral of the ran-
dom potential an. According to Kotani’s theory a necessary
condition for the existence of metallic states is that V�n� be
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deterministic.4,8 This can be achieved by choosing an from a
Gaussian distribution with an N dependent variance �1 /N�.
Finally we carry out an N independent rescaling of the po-
tential such that �V�n��=0 and �V2�n��=�2 �see Fig. 1�. With
these definitions, �a� for ��0 the continuous limit of the
potential belongs to C�; �b� for ��0 all states are localized
for any � since the potential is discontinuous;6–8 and �c� the
correlations are such that B�n� is bounded and limn→NB�n�
�0 for N→�. This is consistent with Kotanis result8 that no
metallic states can if B�n� decays as a power law or faster for
large n.

We carry out a finite-size scaling analysis of the spectrum
combined with a study of g�N� for different values of �. In
Fig. 2 �left� we plot var�s� around the center of the band E
�0 as a function of � for different �’s. It is clearly observed
that for �� ���1 /2 the variance var�s� increases �decreases�
with the system size. This is a signature of an insulator
�metal�. For �=1 /2, var�s� is almost scale invariant for suf-

ficiently weak disorder. Larger volumes would be needed to
determine its localization properties. The behavior of the di-
mensionless conductance further agrees with this picture,
Fig. 2 �right�. In agreement with the OPT, the dimensionless
conductance is size independent around E�0 for any �
�1 /2 and weak disorder. In conclusion, for sufficiently
weak disorder we found a band of metallic states for V�n�
�C� and ��1 /2. Thus metallic states exist provided that
V�n� is at least 1/2-differentiable and correlations are strong
enough, limn→�B�n��0.

We further test the relation between differentiability of the
potential and Anderson localization by studying a 1D system
with an uncorrelated random potential which is subsequently
smoothed either by the Savitzky-Golay28 or the Fourier filter
method �see Fig. 1�.

The Savitzky-Golay method permits one to smooth an
initial uncorrelated potential by the best fit of a polynomial
of degree M of the np surrounding a given point of the origi-
nal uncorrelated potential. The potential is correlated only up
to distances np; therefore limn→�B�n�=0. According to Kot-
ani’s theory6,8 metallic states can only exist if limn→�B�n�
�0.

In the Fourier filter method a smoothed potential is ob-
tained following three steps: �a� the uncorrelated potential is
Fourier transformed; �b� the transformed data are processed
in the k domain using the window function w�k�=1
− �k /kc�2 with kc=N /np a given cutoff; �c� the modified sig-
nal is transformed back to real space. In this case the result-
ing potential is clearly analytical and limn→�B�n��0 so a
band of metallic states might occur for sufficiently weak dis-
order.

A finite-size scaling analysis �see Fig. 3� fully confirms
that only the Fourier filter method leads to a metallic band
for E�Ec�1 characterized again by ballistic motion
�var�s�=0�. By contrast no metallic states are observed if the
smoothed potential is obtained by the Savitzky-Golay
method.

V. EXPERIMENTS WITH COLD ATOMS

We explore different possibilities to test experimentally
the results of previous sections by using cold atoms in

(b)(a)

FIG. 2. �Color online� Left: var�s�, Eq. �1�, as a function of
disorder for E�0 and different sizes N for a system with V�n�
given by Eq. �4�. Metallic states are only observed for V�n��C�

with ��1 /2. Right: dimensionless conductance g�N� as a function
of the system size N, �=0.2, E�0, and �=0.7,0.5,0.3. In agree-
ment with the var�s� results, metallic states, characterized by a con-
stant g, only occur for ��1 /2.

FIG. 1. �Color online� Upper: V�n� after smoothing an uncorre-
lated random potential �gray line� by a Fourier filter �magenta �dark
gray� line�, and the Savitzky-Golay method �green �light gray� line�.
Lower: Eq. �4� for �=�+1 /2=0.7 �black line� and �=�+1 /2
=0.3 �pink �light gray� line�.

(b)(a)

FIG. 3. var�s� versus energy for different system sizes. V�n� is a
random uncorrelated potential of zero mean and �=0.1 /�12
smoothed by �left� a Fourier filter with np=3 and �right� the
Savitzky-Golay filter with M =10 and np=51 �see text for details�.
The dotted line in the left panel corresponds to the var�s� of a
periodic sample. Metallic states only exist in the case of the Fourier
filter method.
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speckle potentials13 and multichromatic lattices.14 A speckle
pattern is formed by diffraction of a laser beam through a
rough plate.13 The resulting speckle potential felt by the cold
atom is random but correlated. A typical signature of these
potentials is that S�k� vanishes for 
k
�kc where kc depends
on the details of the potential. For instance, in Ref. 13,
B�n�	 sin2�n/��

n2 where � is the speckle grain size and kc
	1 /�. From the mathematical results reviewed in the Intro-
duction it is clear that these correlations will increase the
correlation length17 but will not induce an Anderson
transition.7,8

A more promising option is to consider the random non-
ergodic potential V�n�=�n /n�, where �n are random number
from a box or Gaussian distribution.31 Quantum dynamics
depends strongly on the value of � �Ref. 31�. For ��1 /2 all
states are localized. For ��1 /2 there is a metal-insulator
transition in a certain region of energies or disorder. These
results are not expected to be modified if V�n� is weakly
correlated �limn→�B�n�→0�. A speckle pattern such that the
resulting potential has a decreasing intensity is within the
reach of current technical capabilities.

A multichromatic lattice14 is created by combining several
standing light waves with different noncommensurate fre-
quencies. In this case the potential is not random but rather
quasiperiodic. It is thus not surprising that for weak disorder

a region of metallic states with ballistic motion was
observed.14 The potential resulting after a Fourier filter
smoothing studied above could in principle be modeled with
these techniques.

To conclude, we have put forward a general characteriza-
tion for the existence of metallic states in 1D systems. Our
main results are as follows: �a� the degree of differentiability
of the potential acts as a control parameter to induce a metal-
insulator transition; �b� a metallic band exists in 1D provided
that limn→�B�n��0 and V�n��C� with ��0�1 /2� for �non�
quasiperiodic potentials; �c� cold atom techniques might be
suited to observe the metal-insulator transition in 1D; and �d�
in agreement with OPT, the quantum dynamics is ballistic for
a 1D metal.
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